Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Scientists are expected to engage with the public, especially when society faces challenges like the COVID-19 pandemic or climate change, but what public engagement means to scientists is not clear. We use a triangulated, mixed-methods approach combining survey and focus group data to gain insight into how pre-tenure and tenured scientists personally conceptualize public engagement. Our findings indicate that scientists’ understanding of public engagement is similarly complex and diverse as the scholarly literature. While definitions and examples of one-way forms of engagement are the most salient for scientists, regardless of tenure status, scientists also believe public engagement with science includes two-way forms of engagement, such as citizen and community involvement in research. These findings suggest that clear definitions of public engagement are not necessarily required for its application but may be useful to guide scientists in their engagement efforts, so they align with what is expected of them.more » « less
-
Advances in gene editing technologies for human, plant, and animal applications have led to calls from bench and social scientists, as well as a wide variety of societal stakeholders, for broad public engagement in the decision-making about these new technologies. Unfortunately, there is limited understanding among the groups calling for public engagement on CRISPR and other emerging technologies about 1) the goals of this engagement, 2) the modes of engagement and what we know from systematic social scientific evaluations about their effectiveness, and 3) how to connect the products of these engagement exercises to societal decision or policy making. Addressing all three areas, we systematize common goals, principles, and modalities of public engagement. We evaluate empirically the likely successes of various modalities. Finally, we outline three pathways forward that deserve close attention from the scientific community as we navigate the world of Life 2.0.more » « less
-
null (Ed.)As several recent National Academies of Sciences reports have highlighted, greater science communication research is needed on 1) communicating chemistry, and 2) building research-practice partnerships to advance communication across science issues. Here we report our insights in both areas, gathered from a multi-year collaboration to advance our understanding of how to communicate about chemistry with the public. Researchers and practitioners from science museums across the U.S. partnered with academic social scientists in science communication to develop and conduct multi-strand data collections on chemistry communication and informal education. Our focus was on increasing interest in, the perceived relevance of, and self-efficacy concerning chemistry through hands-on activities and connecting chemistry to broader themes concerning everyday life and societal impacts. We outline challenges and benefits of the project that future collaborations can gain from and illustrate how our strands of work complemented each other to create a more complete picture of public perceptions of chemistry.more » « less
An official website of the United States government
